Prove that the square of an odd number is always 1 more than a multiple of 4

2n+1 will always be an odd number (e.g. if n is equal to 3 the answer would be 7, an odd number) So, we square 2n+1 and write this as (2n+1)2 2n +12n 4n2 2n+1 2n 1Then multiple out the brackets to give 4n2+4n+1 We then put the equation into brackets again 4(n2 + n) +1 The 4(n2 + n) term will aways be a multiple of 4Therefore we have proved that:(2n+1)2 = 4(n2 + n) +1 and therefore have proved that the square of an odd number is always 1 more than a multiple of 4.


Answered by Maths tutor

2950 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

State the nth term of the following sequence: 3, 7, 11, 15, 19


Let n be an integer greater than 1. Prove that n^2 - 2 - (n-2)^2 is an even number.


Sketch the graph of y= (x^2) -2x -3 labelling the turning points and points of intersection


An isosceles triangle has a base with length x+4 and the other two sides have length x+3. The perimeter of this isosceles triangle is 16cm. Find the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning