Prove that the square of an odd number is always 1 more than a multiple of 4

2n+1 will always be an odd number (e.g. if n is equal to 3 the answer would be 7, an odd number) So, we square 2n+1 and write this as (2n+1)2 2n +12n 4n2 2n+1 2n 1Then multiple out the brackets to give 4n2+4n+1 We then put the equation into brackets again 4(n2 + n) +1 The 4(n2 + n) term will aways be a multiple of 4Therefore we have proved that:(2n+1)2 = 4(n2 + n) +1 and therefore have proved that the square of an odd number is always 1 more than a multiple of 4.


Answered by Maths tutor

2838 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

-3<n<1 n is an integer, write down all the possible values of n.


expand and simplify (x+7)(2x+4)


Make x the subject of the following formula: 2x-4=2y.


Express f(x) = x^2 + 5x + 9 in the form (x + a)^2 + b, stating the values of a and b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning