Prove that the square of an odd number is always 1 more than a multiple of 4

2n+1 will always be an odd number (e.g. if n is equal to 3 the answer would be 7, an odd number) So, we square 2n+1 and write this as (2n+1)2 2n +12n 4n2 2n+1 2n 1Then multiple out the brackets to give 4n2+4n+1 We then put the equation into brackets again 4(n2 + n) +1 The 4(n2 + n) term will aways be a multiple of 4Therefore we have proved that:(2n+1)2 = 4(n2 + n) +1 and therefore have proved that the square of an odd number is always 1 more than a multiple of 4.


Answered by Maths tutor

2773 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation 2(x^2) + 3x + 1 = 0


Solve the simultaneous equations 5x + y = 21, and x - 3y = 9.


How do I find roots of a quadratic equation when I can't factorise?


Solve the simultaneous equations 3x+2y=13 and 4x+y=14


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning