Solve the simultaneous equations 3x + y = 11 and 2x + y = 8.

First identify which unknown has the same coefficient. In this case it is y.Either add or subtract the two equations to eliminate y. In this case we subtract one equation from the other (can be either). 3x + y = 11- 2x + y = 8 x + 0y = 3which is x = 3.The value of x can now be substituted into either equation to find y.3(3) + y = 11 which is 9 + y = 11. Rearranging to find y we must minus 9 from both sides of the equation to get y on its own on one side of the equation.9 + y - 9 = 11 - 9 gives y = 2.We have now solved the simultaneous equations. We can check our answer is correct by substituting the values of x and y into either original equations. For example 3(3) + 2 = 9 + 2 = 11.




NC
Answered by Natasha C. Maths tutor

3444 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Differentiate the following: 5x^3 + 4x^2 + 3x + 2


A circle with diameter 6cm is cut from a square with side length 7cm. What is the remaining area of the square? You may assume pi = 3 for this question.


There are 10 boys and 20 girls in a class. The class has a test. The mean mark for all the class is 60. The mean mark for the girls is 54. Work out the mean mark for the boys.


How can I prove that an angle in a semi-circle is always 90 degrees?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning