A curve is defined by the parametric equations x = 3^(-t) + 1, y = 2 x 2^(t). Show that dy\dx = -2 x 3^(2t).

Write 3^(t) as an expression involving x : We can rewrite x = 3^(-t) + 1 as x - 1 = 3^(-t) ; equivalently, 3^(t) = (x-1)^(-1). Substitute this expression into y, to write y in terms of x: y = 2 x 3^(t) = 2 x (x-1)^(-1). Differentiate y with respect to x, using the power rule:dy\dx = -2(x-1)^(-2). Substitute in the expression for 3^(t):dy\dx = -2(x-1)^(-2) = -2 x (3^(t))^(2) = -2 x 3^(2t)

MK
Answered by Maleeha K. Maths tutor

3454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do i use the chain rule twice when differentiating?


((x^2+4x)/2x)-((x^2-4x)/x)


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


F ind all values of x in the range 0° <= x <= 180° satisfying tan(x+45°)= 8tan(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning