Prove the property: log_a(x) + log_a(y) = log_a(xy).

The derivation of the property starts with the basic representation of logarithms as powers. Lets consider a^(log_a(xy)). Then, a^(log_a(xy)) = xy. However, x = a^(log_a(x)) and y = a^(log_a(y)). Therefore, xy = a^(log_a(y)) * a^(log_a(x)) = a^(log_a(x) + log_a(y)). Hence, log_a(x) + log_a(y) = log_a(xy).

Answered by Maths tutor

5469 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I use the chain rule for differentiation?


Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


Prove the trigonometric identity tan^2(x)+1=sec^2(x)


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences