Prove the property: log_a(x) + log_a(y) = log_a(xy).

The derivation of the property starts with the basic representation of logarithms as powers. Lets consider a^(log_a(xy)). Then, a^(log_a(xy)) = xy. However, x = a^(log_a(x)) and y = a^(log_a(y)). Therefore, xy = a^(log_a(y)) * a^(log_a(x)) = a^(log_a(x) + log_a(y)). Hence, log_a(x) + log_a(y) = log_a(xy).

Answered by Maths tutor

5290 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area encompassed by y=(3-x)x^2 and y=x(4-x) between x=0 and x=2.


Find the derivative of f(x)=exp((tanx)^(1/2))


Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


Integrate x*sin(x) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences