How do you rationalize the denominator of a fraction?

Questions which ask for you to rationalize the denominator usually includes an integer and a square root of a number (x+sqrt(y)).We can use the following formula to our advantage: (a+b)(a-b)=a^2-b^2. In this case, using x and y: (x+sqrt(y))(x-sqrt(y))=x^2-y, and we can see, that it eliminates the square root from the denominator.How can we achive this? By multiplying the fraction by 1, more specifically by (x-sqrt(y))/(x-sqrt(y)) or the other way around.

Answered by Maths tutor

2686 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

√(6^2+8^2)=^3√125a^3


Solve: sin(x) = 0.5, in the interval of 0 < x < 360 degree.


What are surds and how do I use them ?


Aled has three concrete slabs. Two of the slabs are square, with each side of length x metres. The third slab is rectangular and measures 1 metre by (x +1) metres. The three concrete slabs cover an area of 7m^2. Show that 2x^2 + x – 6 = 0. Find x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences