ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.

First you interpret the given information and create an equation based on the question. x(x-2)<15. Then you express that equation in standard quadratic form: x^2-2x-15<0. Then you have to not forget that x cannot be smaller than 2, because a side of a rectangle cannot be negative. Then you factorise the equation: (x-5)(x+3)<0. And finally you come to the conclusion that the state range is 2<x<5.

Answered by Maths tutor

5568 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of the curve e^(xy) = sin(y)


If n is an integer prove (n+3)^(2)-n^(2) is never even.


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


What is the gradient of this curve y=5x^3+6x^2+7x+8 at point x=3?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences