ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.

First you interpret the given information and create an equation based on the question. x(x-2)<15. Then you express that equation in standard quadratic form: x^2-2x-15<0. Then you have to not forget that x cannot be smaller than 2, because a side of a rectangle cannot be negative. Then you factorise the equation: (x-5)(x+3)<0. And finally you come to the conclusion that the state range is 2<x<5.

Answered by Maths tutor

6177 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 3 level) Integrate the function f(x) = 2 -cos(3x) between the bounds 0, pi/3.


The line AB has equation 5x + 3y + 3 = 0 and it intersects the line with equation 3x - 2y + 17 = 0 at the point B. Find the coordinates of B.


A curve has equation y = (x-1)e^(-3x). The curve has a stationary point M. Show that the x-coordinate of M is 4/3.


Find the turning points of the curve y = 3x^4 - 8x^3 -3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning