The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.

6x + xdy/dx + y + 2ydy/dx - 4 - 6dy/dx = 0xdy/dx + 2ydy/dx - 6dy/dx = 4 - 6x - ydy/dx (x + 2y - 6) = 4 - 6x - ydy/dx = (4-6x-y)/x+2y-6)

Answered by Maths tutor

3457 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


It is given f(x)=(19x-2)/((5-x)(1+6x)) can be expressed A/(5-x)+B/(1+6x) where A and B are integers. i) Find A and B ii) Show the integral of this from 0 to 4 = Kln5


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


What is the 'chain rule'?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences