Here are the first four terms of a quadratic sequence: 11 26 45 68. Work out an expression for the nth term.

Firstly we must count the values between each of the terms to find the first differences. (EG- 26-11=15, 1st differences: 15,19,23)Next we need to count the values between each of the first differences to find the second differences. (EG- 19-15=4, 2nd differences: 4,4)By halving our second difference we know the number that goes before X^2 in our quadratic sequence. (EG- 4/2=2, our nth term therefore contains 2n^2)We must then compare our sequence to 2n^2, by first calculating 2n^2 in a table of values. (EG- n=1 2n^2=2, n=2 2n^2=8, n=3 2n^2=18, n=4 2n^2=32). Then finding the value between 2n^2 and our sequence (EG- 11-2=9, our values: 9,18,27,36 )Finally to find the part of our nth term after 2n^2 we must find the pattern in our final sequence 9,18,27,36. Which by looking at we know is just the 9 times table which would have an nth term of 9n. Therefore our nth term and final answer is 2n^2 +9n.






DC
Answered by Daniel C. Maths tutor

14319 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A ball of mass 10kg is dropped from a height of 50m, if the work done against drag is 500J what is the speed of the ball immediately before impact with the floor? (g=10N/Kg)


Solve the following simultaneous equations: 3x + 5y = 19 and 8x - 2y = -18. If both equations represent lines in a coordinate system, at which point do they intersect?


(x+3)(x-4)(x+5) is identical to x^3 +ax^2 -17x+b. Find the value of a and the value of b.


How to use trigonometry to find angles or lengths


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning