Here are the first four terms of a quadratic sequence: 11 26 45 68. Work out an expression for the nth term.

Firstly we must count the values between each of the terms to find the first differences. (EG- 26-11=15, 1st differences: 15,19,23)Next we need to count the values between each of the first differences to find the second differences. (EG- 19-15=4, 2nd differences: 4,4)By halving our second difference we know the number that goes before X^2 in our quadratic sequence. (EG- 4/2=2, our nth term therefore contains 2n^2)We must then compare our sequence to 2n^2, by first calculating 2n^2 in a table of values. (EG- n=1 2n^2=2, n=2 2n^2=8, n=3 2n^2=18, n=4 2n^2=32). Then finding the value between 2n^2 and our sequence (EG- 11-2=9, our values: 9,18,27,36 )Finally to find the part of our nth term after 2n^2 we must find the pattern in our final sequence 9,18,27,36. Which by looking at we know is just the 9 times table which would have an nth term of 9n. Therefore our nth term and final answer is 2n^2 +9n.






DC
Answered by Daniel C. Maths tutor

13197 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you divide fractions?


How do you complete the square?


What is Standard form? And when can I use it?


In an office there are twice as many females as males. 1/4 of females wear glasses. 3/8 of males wear glasses. 84 people in the office wear glasses. What is the total number of people in the office?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences