Given that x = 4sin(2y + 6), Find dy/dx in terms of x

x = 4sin(2y + 6)dx/dy = 4(2)cos(2y + 6)dx/dy = 8cos(2y + 6) ==> dy/dx = 1/8cos(2y + 6)sin2(2y + 6) + cos2(2y + 6) = 1cos(2y + 6) = √(1 - sin2(2y + 6))cos(2y + 6) = √(1 - x2/16)Hence, our final answer is:dy/dx = 1/8(√(1 - x2/16))dy/dx = 1/[2(16 - x2)1/2]

SP
Answered by Shubham P. Maths tutor

9222 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use logarithms to solve the equation 3^(2x+1) = 4^100


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


Solve sec(x)^2-2*tan(x)=4 for 0<=x<=360


Solve 7x – 9 = 3x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning