Given that x = 4sin(2y + 6), Find dy/dx in terms of x

x = 4sin(2y + 6)dx/dy = 4(2)cos(2y + 6)dx/dy = 8cos(2y + 6) ==> dy/dx = 1/8cos(2y + 6)sin2(2y + 6) + cos2(2y + 6) = 1cos(2y + 6) = √(1 - sin2(2y + 6))cos(2y + 6) = √(1 - x2/16)Hence, our final answer is:dy/dx = 1/8(√(1 - x2/16))dy/dx = 1/[2(16 - x2)1/2]

SP
Answered by Shubham P. Maths tutor

8991 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For the curve y = 2x^2+4x+5, find the co-ordinates of the stationary point and determine whether it is a minimum or maximum point.


Use the identity for sin(A+B) to find the exact value of sin 75.


Integrate y with respect to x, where y = cos(x)/[1+tan^2(x)]


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning