Solve n^2 – n – 90 = 0 to find value of n

Firstly you want to factorise this expression. You have n2, so you know you want to multiple n by itself. Next, you want to think carefully about what two numbers add to get -1 (the coefficient of the second value of the expression, -n) and multiply to get -90. You have two negatives so you know one of your numbers is going to be negative and the other positive (if they were both negative you'd get +90, same if they were both positive). You'll figure out the two numbers you're looking for are - 10 and + 9 ( - 10 + 9 = -1, - 10 x 9 = - 90). So now you have(n + 9)(n - 10) = 0 For this to be true, one of the expressions on the left have to equal 0, so either n + 9 = 0 or n - 10 = 0. The possible values are therefore n = 10 or n = - 9, final answer

AI
Answered by Ahmed I. Maths tutor

4158 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify 4^2 x 2^4


f(x) = 5x − 12. (i) Calculate f(4). (ii) Find f( x + 1). Give your answer in the form ax + b .


It is given that sin(x) = 1/2. Find the value of sec(x)


There are only 7 blue pens, 4 green pens and 6 red pens in a box. One pen is taken at random from the box. Write down the probability that this pen is blue.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning