MYTUTOR SUBJECT ANSWERS

434 views

The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.

Note here: u_n indicates u subscript n.

(a) u_1 = 48 and the ratio, r = 0.6

Using a calculator, u_2 = 48 x 0.6 = 28.8

u_3 = 28.8 x 0.6 = 17.28

(b) We have the known result that the sum to infinity of a geometric series is a/(1-r) where a is the first term and r is the common ratio.

Therefore, the sum to infinity here is 48/(1-0.6) = 48/0.4 = 120

(c) We now want the sum from the fourth term to infinity. We can use the same formula as before, but replacing the first term which we called a with the fourth term of the sequence.

Calculating the fourth term: u_4 = 17.28 x 0.6 = 10.368

Therefore, our sum is equal to 10.368/(1-0.6) = 10.368/0.4 = 25.92

Felix S. IB Maths tutor, 11 Plus Maths tutor, GCSE Maths tutor, 13 pl...

10 months ago

Answered by Felix, an A Level Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

264 SUBJECT SPECIALISTS

£20 /hr

Tarryn R.

Degree: Mathematics (Bachelors) - Exeter University

Subjects offered:Maths, Further Mathematics + 2 more

Maths
Further Mathematics
Extended Project Qualification
English Literature

“Hi I'm Tarryn, I'm a Maths student with a wide knowledge in Maths and English Literature modules - I pride myself on being flexible, reliable and enthusiastic!”

£24 /hr

Runzhi C.

Degree: Medicine (Bachelors) - Imperial College London University

Subjects offered:Maths, Chemistry+ 3 more

Maths
Chemistry
Biology
-Personal Statements-
-Medical School Preparation-

“Hi there, I am a first year medical student at Imperial College London and I have lived in the UK all my life. I enjoy studying medicine because it encompasses both scientific knowledge and social aspects. I am relatively new to tutor...”

£24 /hr

Samuel H.

Degree: Philosophy (Bachelors) - Bristol University

Subjects offered:Maths, Philosophy and Ethics+ 2 more

Maths
Philosophy and Ethics
-Personal Statements-

“Philosophy student specialising in Philosophy of Maths and Science, can provide high quality tuition in these subjects, and assist with personal statements.”

About the author

Felix S.

Currently unavailable: for new students

Degree: Mathematics (Masters) - Warwick University

Subjects offered:Maths, Further Mathematics

Maths
Further Mathematics

“About me: Hi, I'm Felix and I'm currently studying for a Mathematics degree at Warwick University. I am very keen to show people not just how to pass maths exams, but how to actuallyenjoy the subject too! I got A* in GCSE Maths and th...”

You may also like...

Posts by Felix

Express 0.545454... as a fraction in its simplest form.

Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.

Prove that the function f:ZxZ -> ZxZ defined by f(x,y) = (2x+y,x+y) is a bijetion.

Sunita has 75 pens and she ties them into bundles of 8. How many pens does she have left over?

Other A Level Maths questions

The curve C is defined by x^3 – (4x^2 )y = 2y^3 – 3x – 2. Find the value of dy/dx at the point (3, 1).

A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius

How do I integrate ln(x)

The Chain Rule: Differentiate (x^2 + 1)^5/2 with respect to x

View A Level Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok