What method should I use to differentiate equations with an x as the power of a number. E.g. 2^x

Take the log of both sidesln(y) = ln(2^x)This can be re-written as:ln(y) = ln(2)*xTake the exponent of both sidese^ln(y) = e^(ln(2)*x)Which gives:y = e^(ln(2)*x)Since ln(2) is a constant, apply the usual method when differentiating e^nxdy/dx = ln(2)*e^(ln(2)*x)From the question y=2^x which we re-wrote as e^(ln(2)*x) so substitute in giving he final answer:dy/dx = ln(2)*2^x

BT
Answered by Billy T. Maths tutor

3103 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate ln(x)?


If f(x) = sin(2x)/(x^2) find f'(x)


A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)


Integrate sin7xcos3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning