Integrate y=(x^2)cos(x) with respect to x.

This problem must be solved using integration by parts, since y is equal to the product of two functions of x. Let u=x^2, therefore u'=2x (u'=du/dx). Let v'=cos(x), therefore v=sin(x) (v'=dv/dx).Using the integration by parts formula: Intgrl(y)dx= uv - Intgrl(vu')dx (which is given on the A Level maths formula sheet), Intgrl(y)dx=x^2(sin(x)) - Intgrl(2x(sin(x))dx). We must apply the same rule again, since 2x(sin(x)) cannot be integrated directly. u=2x, u'=2v'=sin(x), v=-cos(x). Intgrl(y)dx=x^2(sin(x)) - [-2x(cos(x)) - intgrl(2(-cos(x))dx], -2cos(x) can now be integrated giving the final solution: Intgrl(y)=x^2(sin(x)) + 2x(cos(x)) - 2(sin(x)) + c.

AH
Answered by Antony H. Maths tutor

3620 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


Differentiate: sin(x) + 2x^2


Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Let X be a normally distributed random variable with mean 20 and standard deviation 6. Find: a) P(X < 27); and b) the value of x such that P(X < x) = 0.3015.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning