Find the integral of 4sqrt(x) - 6/x^3.

The easiest way to do this is to break the integral up into it's separate parts. We have:integral of 4sqrt(x)andintegral of -6/x^3
Both of which have constants that can be taken out, i.e. 4 and 6, respectively.So all we need to compute is the integral of sqrt(x), and the integral of 1/x^3. These can be rewritten as x^(1/2), and x^-3, respectively. With the terms in this form it's easier to see that we can use the properties of polynomials to do these computations. sqrt(x) = x^(1/2) integrates to (x^(3/2))/(3/2) = 2/3 * x^(3/2), and 1/x^3 = x^-3 integrates to x^-2/-2 = -1/2x^2.
We can substitute these values back into our integral to see that 4sqrt(x) integrates to 4 * 2/3 * x^(3/2) = 8/3 * x^(3/2), and 6/x^3 integrates to -6 * -1/2x^2 = 3/x^2. The final step is to add the integrating constant, c, as this is an indefinite integral. Hence the final answer is 8/3 * x^(3/2) + 3/x^2 + c.

SP
Answered by Sam P. Maths tutor

2807 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the centre and radius of the circle with the equation x^2 + y^2 - 8x - 6y - 20 = 0.


Given y =( 2x+1 )^0.5 and limits x = 0 , x = 1.5 , find the exact volume of the solid generated when a full rotation about the x-axis .


Intergrate ln(x) with resepct to x


What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning