Solve for x (where 0<x<360) 2sin^2(x) - sin(x) - 1 = 0

Factorise the equation (the equation is quadratic in sin(x) )2 sin2(x) - sin(x) - 1 = 0(2sin(x) + 1)(sin(x) - 1) = 0Work out the solutions to the quadratic equation2sin(x) +1 = 0 or sin(x) - 1 = 0sin(x) = -1/2 or sin(x) = 1Determine the possible values of x, remembering to include any values generated due to the cyclic nature of the sin() functionsin(x) = 1 ---> x = 90sin(x) = -1/2 ---> x = -30 This value is outside of our given range, but by considering the sin curve, we can determine that x = 330 or x = 210Therefore the solutions to our equation are x=90 x=210 x=330

Answered by Maths tutor

5942 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find (and simplify) an expression, in terms of n, for the sum of the first n terms of the series 5 + 8 + 11 + 14 + ... ?


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


integrate 1+ln(x) with respect to x


How do I solve a cubic?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning