How do I find dy/dx for a given equation, once this is found how do I find the value of x such that dy/dx = 0.

From a given equation y = mx + c. Finding dy/dx allows us to see the gradient of the curve. In order to do this we can follow the formula:When y = xn , dy/dx = nxn-1 . Let us use this in a real scenario. Say we are given the equation y = 3x2 - 6x + 4. We can break this down into stages. First let us differentiate the 3x2. Here the n = 2. So we bring the 2 to the front and subtract 1 from the power: so differentiating 3x2 we have 6x. Now we do the same for -6x. Here the n = 1 so we bring to the 1 to the front and subtract 1 from the power: so differentiating -6x we have -6 (-6x0 = -6). Differentiating a constant results to cancelling that constant so differentiating the 4 results in 0 (as the gradient of a constant function is always 0). Putting all this together we have dy/dx = 6x -6. Now to find the value of x such that dy/dx = 0. We have our dy/dx as shown. We then set dy/dx = 0 and solve the equation. We therefore have 6x - 6 = 0. This implies that 6x = 6. So therefore x =1.

SA
Answered by Sebastian A. Maths tutor

31150 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


A curve has equation y = 3x^3 - 7x + 10. Point A(-1, 14) lies on this curve. Find the equation of the tangent to the curve at the point A.


Find the stationary points of y = (x-7)(x-3)^2.


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning