How do I find the limit of a sequence that is expressed as a fraction?

There are a number of ways of looking at the limiting behaviour of a fraction. Let’s look at three examples:1) a(n) = 2n+1/7n —> divide into two separate terms, that both clearly converge. 2) b(n) = 2/( n^2-1) = (2) x (1)/(n+1)(n-1) = (2) ((A/n+1)+(B/n-1)) = (2) ((-1/n+1)+(1/n-1)) —> Partial fractions method with difference of two squares. 3) c(n) = 8n+7 / (x+2)(x-1) = 3/x+2 + 5/x-1 —> Partial fractions (include other rules too).

ZS
Answered by Zayn S. Maths tutor

3103 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate expressions of form Ax^b where A and b are constants and x is a variable


Differentiate 2e^(3x^2+6x)


Find the binomial expansion of ((x^2) − 5)^3


integrate from 0 to 2: 2x*sqrt(x+2) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning