How do I find the limit of a sequence that is expressed as a fraction?

There are a number of ways of looking at the limiting behaviour of a fraction. Let’s look at three examples:1) a(n) = 2n+1/7n —> divide into two separate terms, that both clearly converge. 2) b(n) = 2/( n^2-1) = (2) x (1)/(n+1)(n-1) = (2) ((A/n+1)+(B/n-1)) = (2) ((-1/n+1)+(1/n-1)) —> Partial fractions method with difference of two squares. 3) c(n) = 8n+7 / (x+2)(x-1) = 3/x+2 + 5/x-1 —> Partial fractions (include other rules too).

ZS
Answered by Zayn S. Maths tutor

2574 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by substitution?


Find the binomial expansion of (4-8x)^(-3/2) in ascending powers of x, up to and including the term in x^3. Give each coefficient as a fraction in its simplest form. For what range of x is a binomial expansion valid?


Simplify: 3l^2mn+nl^2m−5mn^2l+l^2nm+2n^2ml−mn^2


Show that the line y = x - 7 does not meet the circle (x + 2)^2 + y^2 = 33.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences