Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis

First find the coordinates of the point in question:We know x=0By plugging this into the equation of the line we get y=(0-2)2 = (-2)2 = 4Therefore the point is (0,4)
To find the gradient of a line, we differentiate the equation of the line:By substitution -> y=u2 , u=x-2dy/dx=dy/du.du/dxdy/du = 2u , du/dx=1Therefore dy/dx =2u=2x-4Subbing in known coordinate into this equation we get:dy/dx(x=0,y=4) = -4Answer = -4

AJ
Answered by Alec J. Maths tutor

3634 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = f(x) and passes through the point (4,22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7 use intergration to find f(x).


Use implicit differentiation to find the derivative of 2yx^2, with respect to x.


Express 2 cos x – sin x in the form Rcos( x + a ), where R and a are constants, R > 0 and a is between 0 and 90 ° Give the exact value of R and give the value of to 2 decimal places.


Differentiate expressions of form Ax^b where A and b are constants and x is a variable


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning