Find the gradient of the tangent to the line y=(x-2)^2 at the point that it intercepts the y-axis

First find the coordinates of the point in question:We know x=0By plugging this into the equation of the line we get y=(0-2)2 = (-2)2 = 4Therefore the point is (0,4)
To find the gradient of a line, we differentiate the equation of the line:By substitution -> y=u2 , u=x-2dy/dx=dy/du.du/dxdy/du = 2u , du/dx=1Therefore dy/dx =2u=2x-4Subbing in known coordinate into this equation we get:dy/dx(x=0,y=4) = -4Answer = -4

AJ
Answered by Alec J. Maths tutor

3816 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


Integrate | x^7 (ln x)^2 dx ( | used in place of sigma throughout question)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning