Simplify the algebraic expression: (3x^2-7x-6)/(x^2-6x+9)

We start by noticing that both the numerator and denominator are expressions which can be factorised into brackets. Starting with the numerator, we multiply the coefficient of x^2 and the constant term together (3 x -6 = -18). We then look for factors of -18 which add up to -7. We find 2 and -9, so we rewrite the numerator as 3x^2+2x-9x-6. We then look for common factors between the x^2 and x terms. We find 3x from 3x^2 and 9x. We combine and factorise these two terms and then do the same with the remaining terms. This gives us 3x(x-3)+2(x-3). We factorise the (x-3) out and this gives us (3x+2)(x-3). We use the same method to factorise the denominator which leaves us with (3x+2)(x-3)/(x-3)^2. We cancel out (x-3) and obtain the final answer (3x+2)/(x-3).

EG
Answered by Emily G. Maths tutor

4003 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If there are 20 marbles in a bag and 1/5 are red, what fraction are red if 1 more red marble is added?


How do you solve simultaneous equtions?


Find the difference between the areas of these 2 shapes to 2 decimal places. Rectangle (width 4cm length 2.5cm) Circle (diameter 2.4) use pi = 3.14


Solve the quadratic 3x^2+11x+6=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning