The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

HH
Answered by Henry H. Maths tutor

11983 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


How do you take the derivative of a^x ?


How do you sketch the curve y=(x^2 - 4)(x+3), marking on turning points and values at which it crosses the x axis


What are the set of values for x that satisfy the below equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning