The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

HH
Answered by Henry H. Maths tutor

11521 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=(4x+1)^3sin 2x , find dy/dx .


How do we know that the derivative of x^2 is 2x?


Solve the differential equation dy/dx = 6xy^2 given that y=1 when x=2.


How do you find the stationary points on a curve?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning