The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

HH
Answered by Henry H. Maths tutor

11874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation (k+1)x^2+12x+(k-4)=0 has real roots. (a) Show that k^2-3k-40<=0. (b) Hence find the possible values of k.


Find the coefficient of x^4 in the expansion of: x(2x^2 - 3x + 1)(3x^2 + x - 4)


Show that the curve with equation y=x^2-6x+9 and the line with equation y=-x do not intersect.


Differentiate y = (6x-13)^3 with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning