How do i find dy/dx in terms of t for two parametric equations that are in terms of t.

To differentiate parametric equations we have to use the chain rule in a special way.
We know that the chain rule can be written as dy/dx = dy/dt * dt/dx, as both dts cancel. But if we have an equation x in terms of t, and an equation y in terms of t, the above equation will no longer work, as we want dy/dt, but also dx/dt (rather than dt/dx).
To manage this the trick we use is simply to rewrite the equation as dy/dx = dy/dt / dx/dt. Using this we can now differentiate both equation y and equation x like normal, then put them as a fraction with dy/dt on top and dx/dt on the bottom and reduce this fraction to its simplest form.

BW
Answered by Ben W. Maths tutor

4412 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


What is the indefinite integral of ln(x) ?


A pot of water is heated to 100C and then placed in a room at a temperature of 18C. After 5 minutes, the pan temperature falls by 20C. Find the temperature after 10minutes.


Integrate xsin(2x) by dx between the limits 0 and pi/2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences