solve the simultaneous equations: 2x-3y = 16 and x + 2y = - 6

First we need to subtract a variable from another to eliminate a variable from both equations. To do this we need to make either the X value the same or the Y value the same.We can do this by multiplying the second equation by two giving us 2X + 4Y = -12Now we have a 2x in the first equation and the second.2x - 3y = 162x + 4y = -12 Now subtract the second equation from the first. (take care with the negative values-7y = 28Next divide both sides by -7y= 28/-7 = -4So now we have our y value (-4)Next, substitute the y value into one of the equations.x + 2y = -6x + 2(-4) = -6 Expand out the bracketx - 8 = -6 Add 8 to both sidesx = 2SOLUTION: X = 2 Y = -4

DR
Answered by Dana R. Maths tutor

3956 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve this problem?


Joe buy a pack of 7 chocolate bars. The pack costs £5.97, Joe sells all 7 chocolate bars for 87p each. Work out Joes percentage profit to 2 decimal places.


The graph of y = x^2 – 1 is translated 3 units to the left to give graph A.The equation of graphA can be written in the form y=x^2 +bx+c Work out the values of b and c.


Write √ 45 in the form a √ 5, where a is an integer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning