Prove that the square of an odd number is always 1 more than a multiple of 4

In order to prove this we can write a general expression of an odd number in terms of n, e.g - 2n+1Square this 'odd number': (2n+1)^2, therefore you can write it as (2n+1)(2n+1), then expand (multiply out) the brackets to get: 4n^2 + 4n + 1We can then factorise this to get: 4(n^2 + 1) + 1 which is 'one more than a multiple of 4' as 4(n^2 + 1) will always be a multiple of 4 regardless of what n is.

BH
Answered by Ben H. Maths tutor

3231 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation- 2x+8y=10 and 3x+2y=5


c is a positive integer. Prove that (6c^3 + 30c) / (3c^2 +15) is an even number.


Solve the simultaneous equation: 2x + 3y = 6, 3x + 2y = 5.


White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning