Show that (x+1)(x+2)(x+3) can be written as ax^3+bx^2+cx+d

Start by multiplying any 2 brackets together: (x + 1)(x + 2): Split the 1st bracket: x(x+2) + 1(x+2) = x^2 + 2x + x + 2 = x^2 + 3x + 2 Then multiply that answer with the last bracket: (x + 3)(x^2 + 3x + 2): Split the 1st bracket: x(x^2 +3x + 2) +3(x^2 +3x + 2)= x^3 + 3x^2 + 2x + 3x^2+ 9x + 6 = x^3 + 6x^2 + 11x + 6 . a = 1, b = 6, c = 11, d = 6.

RS
Answered by Rushab S. Maths tutor

3349 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rationalise the denominator of 2/(3-sqrt(2)).


Show that (x + 1)(x + 3)(x + 5) can be written in the form ax^3 + bx^2 + c^x + d where a, b, c and d are positive integers.


Draw y=x^2+5


Solve the equation x^2 + 8x = -15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning