Show that (x+1)(x+2)(x+3) can be written as ax^3+bx^2+cx+d

Start by multiplying any 2 brackets together: (x + 1)(x + 2): Split the 1st bracket: x(x+2) + 1(x+2) = x^2 + 2x + x + 2 = x^2 + 3x + 2 Then multiply that answer with the last bracket: (x + 3)(x^2 + 3x + 2): Split the 1st bracket: x(x^2 +3x + 2) +3(x^2 +3x + 2)= x^3 + 3x^2 + 2x + 3x^2+ 9x + 6 = x^3 + 6x^2 + 11x + 6 . a = 1, b = 6, c = 11, d = 6.

RS
Answered by Rushab S. Maths tutor

3768 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation x^2+5x+6=0


Find two solutions to the quadratic equation x^2 + 2x - 15 = 0


Rectangle ABCD has sides 2x+5 and x+2 with rectangle EFGH of sides x+3 and x cut out of it. The total area of shape ABCD is 5cm^2. Show that 0 = x^2 + 6x +5 [5 Marks]


ABCD is a square of side 10 cm. Each side of the square is a tangent to the circle. Work out the total area of the shaded regions in terms of . Give your answer in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning