Show that (x+1)(x+2)(x+3) can be written as ax^3+bx^2+cx+d

Start by multiplying any 2 brackets together: (x + 1)(x + 2): Split the 1st bracket: x(x+2) + 1(x+2) = x^2 + 2x + x + 2 = x^2 + 3x + 2 Then multiply that answer with the last bracket: (x + 3)(x^2 + 3x + 2): Split the 1st bracket: x(x^2 +3x + 2) +3(x^2 +3x + 2)= x^3 + 3x^2 + 2x + 3x^2+ 9x + 6 = x^3 + 6x^2 + 11x + 6 . a = 1, b = 6, c = 11, d = 6.

RS
Answered by Rushab S. Maths tutor

3863 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A 20-foot ladder is leaning against a vertical wall. The bottom of the ladder is pulled away horizontally from the wall at 3 feet per second. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 10 feet away?


Adam gets a bonus of 30% of £80. Katy gets a bonus of £28. Work out the difference between the bonus Adam gets and the bonus Katy gets.


Find the lowest common multiple and highest common factor of 30 and 60.


b)You are given g(x) = ax + b; You are also given that g(0) = 4 and g(1) = - 6; Find the value of a and the value of b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning