Solve (72x^3 - 18x)/(12x^2 - 6x) = 0 for x.

So first you need to recognise that you are able to take 2x out of both the numerator and denominator of the fraction:(72x3 - 18x)/(12x2 - 6x) = 0 ---> (2x (36x2 - 9))/ (2x (6x - 3)) = 0 , the 2x's cancel and we are left with (36x2 - 9)/ (6x - 3)= 0 , from here it is necessary to identify that the numerator can be factorised by the difference of two squares: (6x - 3)(6x + 3)/ (6x - 3)= 0 , the (6x-3) brackets cancel and we are left with the simple equation, 6x+3 = 0, which is solved for x to be, x = -1/2.

WR
Answered by William R. Maths tutor

2704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3(m + 4) – 2(4m + 1)


Solve the Inequality X^2 - 2X - 8 < 0


Solve (6x-2)/4 - (3x+3)/3 = (1-x)/3. (4 marks)


Let f(x)= x/5 + 1 . Find f^-1(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning