Solve (72x^3 - 18x)/(12x^2 - 6x) = 0 for x.

So first you need to recognise that you are able to take 2x out of both the numerator and denominator of the fraction:(72x3 - 18x)/(12x2 - 6x) = 0 ---> (2x (36x2 - 9))/ (2x (6x - 3)) = 0 , the 2x's cancel and we are left with (36x2 - 9)/ (6x - 3)= 0 , from here it is necessary to identify that the numerator can be factorised by the difference of two squares: (6x - 3)(6x + 3)/ (6x - 3)= 0 , the (6x-3) brackets cancel and we are left with the simple equation, 6x+3 = 0, which is solved for x to be, x = -1/2.

WR
Answered by William R. Maths tutor

2890 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations. x^2 + 2y = 9, y = x + 3


Simplify : 4(x+5) / x^2+2x-15


What is completing the square and how do you do it?


Solve 4(3x - 2) = 2x - 5. (3 marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning