For all values of x, f(x) = (x + 1)^2 and g(x) = 2(x-1). Show that gf(x) = 2x(x + 2) and find g^-1(7)

gf(x) means you are applying the function f to x (giving you f(x)) and then you are applying the function g to f(x). Since g(x) = 2(x-1), g(f(x)) =2(f(x)-1). This means after substitution, gf(x) = 2((x+1)2 -1), expanding and simplifying this gives the answer.g-1( x) is the inverse function of g(x). Lets call g(y) = x, hence x = 2(y-1), rearrange this to make y the subject. This will give you y = (x + 2)/2. let y = g-1(x), hence g-1(x) = (x + 2)/2. Now we substitute x = 7 and get the answer 9/2.

AP
Answered by Arya P. Maths tutor

8756 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 2x-3y = 16 x+2y= -6


What is £23 increased by 4%?


Solve these simultaneous equations. 5x + 2y = 20 and x + 4y = 13.


write (3.2 x 10^4) - (5 x 10^3) in standard form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences