Prove that (3n+1)²-(3n-1)² is a multiple of 4 taking into account that n is a positive integer value

  1. Square the brackets (3n+1)²= (3n+1)(3n+1) = 9n²+3n+3n+1 = 9n²+6n+1 (3n-1)²= (3n-1)(3n-1) = 9n²-3n-3n+1 = 9n²-6n+12. Write out the full equation (9n²+6n+1) - (9n²-6n+1) = 9n²+6n+1-9n²+6n-1 = 12n3. Explain your reasoning 12n is divisible by 4 as (12n÷4) equals 3n therefore (3n+1)²-(3n-1)² is a multiple of 4 as 4 goes into 12 a total of 3 times and 3 is an integer
NK
Answered by Nalin K. Maths tutor

6401 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Dipen and Nisha are planning a wedding reception. Nisha says, “I want to invite 70 guests.” Dipen says, “If we invite one-fifth fewer guests, we will save more than £500” Is Dipen correct?


Solve the simultaneous equations;5x +y = 21 and x-3y=9


Expand the following : (2x+3)(x-1)


Solve the simultaneous equations 3x + y = –4 and 3x – 4y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences