Given the two equations [1](3x + 4y = 23) and [2](2x + 3y = 16), find the values of x and y

One way to find the values of x and y is to substitute the value of x into one of the equations. To sub in x we need to rearrange an equation to get x on its own. We can change the second equation to x = (16 - 3y)/2. We then sub this into equation 1 and get3[(16 - 3y)/2] + 4y = 23. Expanding this out gets 24 - (9/2)y + 4y = 23. -(9/2)y + 4y = -1 -1/2y = - 1 -y = -2 y = 2. This can then be substituted back into an equaiton to get x. Subbing back into equation 1 gets 3x + 8 = 23. 3x = 15 x = 5This can then be verified by subbing in our values back into equation 2 to check that our answers are correct.

SH
Answered by Stephen H. Maths tutor

3086 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Billy buys 4 adult tickets at £15 each and 2 child tickets at £10 each for show. A 10% booking fee is added to the ticket price. 3% is then added for paying by credit card. Find the total charge for these tickets when paying by card


How do you find the turning point of a quadratic equation?


How would you convert a recurring decimal to a fraction?


Make x the subject of the equation y = {2(1+x)}/(3x+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences