Calculate the indefinite integral of ln(x)?

This would be calculated using the integration by parts method: NOTE: You can consider the function ln(x) to be a constant of value 1 multiplied by ln(x). The question would then become: Calculate the indefinite integral of : 1 * ln(x) The integration by parts method states: The integral of the product of two values u * (dv/dx) = u v - integral(v * (du/dx)). Using this we can assign u the value of ln(x) and (dv/dx) the value of 1. As we require du/dx we can differentiate ln(x) (aka u) to give 1/x. As we require v we can integrate 1 (aka dv/dx) with respect to x to give simply x. So: u = ln (x) v = x du/dx = 1/x dv/dx = 1 Then (using the original equation) the integral becomes: (ln(x) * x) - integral( x1/x ) = xln(x) - integral(1) + A [where A is a constant]. The integral of 1 is simply x so the answer is: xln(x) - x + C [where C is a constant] Note: The constant A is due to the 'by parts' section of the integral and can be ignored, as a second integral then takes place (integrating 1 in this case). Both of these constants are independent of x and therefore can be combined to give C.

UO
Answered by Uwais O. Maths tutor

4254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


Can you explain where the "Integration by parts" formula comes from?


FInd the equation of the line tangent to the graph g(x)=integral form 1 to x of cos(x*pi/3)/t at the point x=1


If I throw a ball, of mass 2kg, straight up in the air, with velocity 10ms-1, how long until it lands? Assume gravity = 10ms-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning