Calculate the indefinite integral of ln(x)?

This would be calculated using the integration by parts method: NOTE: You can consider the function ln(x) to be a constant of value 1 multiplied by ln(x). The question would then become: Calculate the indefinite integral of : 1 * ln(x) The integration by parts method states: The integral of the product of two values u * (dv/dx) = u v - integral(v * (du/dx)). Using this we can assign u the value of ln(x) and (dv/dx) the value of 1. As we require du/dx we can differentiate ln(x) (aka u) to give 1/x. As we require v we can integrate 1 (aka dv/dx) with respect to x to give simply x. So: u = ln (x) v = x du/dx = 1/x dv/dx = 1 Then (using the original equation) the integral becomes: (ln(x) * x) - integral( x1/x ) = xln(x) - integral(1) + A [where A is a constant]. The integral of 1 is simply x so the answer is: xln(x) - x + C [where C is a constant] Note: The constant A is due to the 'by parts' section of the integral and can be ignored, as a second integral then takes place (integrating 1 in this case). Both of these constants are independent of x and therefore can be combined to give C.

UO
Answered by Uwais O. Maths tutor

3950 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(5 + 2(2^0.5))(7 - 3(2^0.5))


AQA PC4 2015 Q5 // A) Find the gradient at P. B) Find the equation of the normal to the curve at P C)The normal P intersects at the curve again at the point Q(cos2q, sin q) Hence find the x-coordinate of Q.


The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning