How do you integrate the natural logarithm?

We already know that the derivative of ln(x) is 1/x, so how can this be used for integration?Recall integration by parts uses knowledge of the derivative of one of the parts in the formula.int(u v' dx) = uv - int(u' v dx)We now set the integrand to ln(x) * 1 and set u = ln(x) and v' = 1, so now we only need to differentiate ln(x), which we know how to do.Now differentiate u and integrate v' to get u' and v: u' = 1/x and v = x.Finally we can plug the results into the integration by parts formula:int(ln(x) dx) = ln(x)*x - int(1/x * x dx)int(ln(x) dx) = xln(x) - int(1 dx)int(ln(x) dx) = xln(x) - x + C

JL
Answered by Josh L. Maths tutor

2561 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the two curves y1 and y2, verify the two curves intersect at (-5,0) and (2,0)


Given that: y = 5x^3 + 7x + 3. What is dy/dx? What is d^2y/dx^2?


How do I use the product rule for differentiation?


What is differentiation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning