Solve the simultaneous equations 4x + 2y =20 and 8x + 6y =45

Let (1) be 4x + 2y =20 and (2) be 8x + 6y =45.First we want to eliminate either x or y so that we have an equation in terms of only one unknown. Lets eliminate x. If we multiply (1) by 2 we have2(4x + 2y) = 2(20) giving 8x + 4y =40. Now the x terms in both equations are the same. Next we subtract 2*(1) from (2) to give:(2) - 2*(1) : (8x + 6y) - (8x + 4y) = 45 - 40 giving 2y = 5. this can be rearranged to find y = 2.5.Finally, the the value for y can be substituted into either (1) or (2) to give the value of x: 4x + 2(2.5) =204x = 15x = 15/4 = 3.75

JR
Answered by Jade R. Maths tutor

2640 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove that the square of an odd number is always 1 more than a multiple of 4


How do I find the nth term of a sequence?


Pythagoras' Theorem


Sam is a bodybuilder. He currently weighs 90kg, but is aiming to be at 130kg in the next four months. Every month, he puts on 8% of his weight. Does he reach his target?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences