Solve the simultaneous equations 4x + 2y =20 and 8x + 6y =45

Let (1) be 4x + 2y =20 and (2) be 8x + 6y =45.First we want to eliminate either x or y so that we have an equation in terms of only one unknown. Lets eliminate x. If we multiply (1) by 2 we have2(4x + 2y) = 2(20) giving 8x + 4y =40. Now the x terms in both equations are the same. Next we subtract 2*(1) from (2) to give:(2) - 2*(1) : (8x + 6y) - (8x + 4y) = 45 - 40 giving 2y = 5. this can be rearranged to find y = 2.5.Finally, the the value for y can be substituted into either (1) or (2) to give the value of x: 4x + 2(2.5) =204x = 15x = 15/4 = 3.75

JR
Answered by Jade R. Maths tutor

2752 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is (x-5)^2


Aidan, Emily and Seth shared some sweets in the ratio 2 : 7: 4 Seth got 16 more sweets than Aidan. Work out the total number of sweets they shared.


Dan works 5 days a week. Is it cheaper to use car or bus? Bus weekly ticket = £19.50. Car drive is 24.2 miles, car does 32.3 miles per gallon of petrol, which costs £1.27 per litre. Use 1 gallon = 4.5 litres


Expand and simplify (3X+9)(X-6)=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning