Solve the simultaneous equations, (1) 4x+y=23 and (2) 3x+5y=111/2

Simultaneous equations are equations that have one or more unknown values. There are a multitude of ways to solve simultaneous equations, however the elimination method is the most common at GCSE level maths. Currently neither of the variables/unknowns are equal and so the elimination method cannot be used yet. However, you can do this by equating either the x or y values. In this case however, i will multiply (1) by 5 in order for both the equations to have 5y and then the elimination method can be used. (1) will now equal 20x+5y=115. While (2) remains the same.It can now be seen that both equations have the same coefficient for their unknown value y. Now we can minus equation (2) from (1) to eliminate the y value, and leave us with the x value which can then be solved. (20x+5y=115)-(3x+5y=111/2).This leaves us with 17x=119/2. If you then divide through by 17 then the x-value has been solved. x=3.5.However, we need to find out the y value, which can be found through substituting the x value (3.5) back into either of the original questions. This can be done by 4(3.5)+y=23. Which equals 14+y=23. Now subtract 14 to find out that y=9.Therefore x=3.5, y=9.

AP
Answered by Allegra P. Maths tutor

2888 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the sum of 3/5 and 7/8?


Purple paint is made by mixing red paint and blue paint in the ratio 5 : 2 Yan has 30 litres of red paint and 9 litres of blue paint. What is the maximum amount of purple paint he can make?


Olly drove 56 km from A to B. He then drives 61 km from B to C. Olly’s average speed from A to B was 70 km/h. Olly took 75 minutes to drive from B to C. Work out Olly’s average speed for his total drive from A to C.


Show that 0.81 reocurring = 9/11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning