Use the substition u = cos(x) to find the indefinite integral of -12sin(x)cos^3(x) dx

We are given the substitution to use, so the first step is to differentiate "u" with respect to x

du/dx = -sin(x)

Now, to replace the "dx" in the original integrand with something in terms of "du", we rearrange the differential:

dx = -1/sin(x) du

We substitute this into the original expression we are integrating; this gives: 

S -12sin(x)cos3(x) (-1/sin(x)) du

Let's do some simplifying here; the negative signs cancel, and so does sin(x):

S 12cos3(x) du

Now, simplify again using u=cos(x); this gives:

S 12u3 du

This is a simple C1-level integration; integrating with respect to "u" and adding a constant of integration, we get:

3u4 + c

For our final answer, replace "u" with cos(x):

3cos4x) + c

AH
Answered by Arnab H. Maths tutor

8790 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=rootx + 4/rootx = 4, find the value of dy/dx when x=8, writing your answer in the form aroot2, where a is a rational number.


The equation 5x sqaured + px + q , where p and q are constants, has roots α and α + 4. (a) Show that p squared = 20q +400.


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


When and how do I use integration by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning