There are m fruits in a basket. 3 of the fruits are kiwis; the rest are lemons. The probability of picking two kiwis in a row (without replacement) is 0.3. Show m^2 - m - 20 = 0.

Number of lemons = m - 3. Construct a tree diagram using the information given to represent picking two fruits out of the basket (without replacement) one after the other. Since picking each fruit is an independent event, just multiply probabilities to find the probability of selecting a kiwifruit twice in a row: P(two kiwifruits in a row) = 3/m * 2/(m - 1) and set this equal to 0.3 (given in the question). A bit of rearrangement of the algebra gives: 3/10 = 6/[m(m - 1)] => 3m(m - 1) = 60 => m(m - 1) = 20 => m2 - m - 20 = 0 as required.

HW
Answered by Heather W. Maths tutor

2838 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


Rearrange the following, making c the subject: (3c + b)/2 = c + a


8^(3/4)*2^(x) = 16^(4/5). Work out the exact value of x.


The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning