There are m fruits in a basket. 3 of the fruits are kiwis; the rest are lemons. The probability of picking two kiwis in a row (without replacement) is 0.3. Show m^2 - m - 20 = 0.

Number of lemons = m - 3. Construct a tree diagram using the information given to represent picking two fruits out of the basket (without replacement) one after the other. Since picking each fruit is an independent event, just multiply probabilities to find the probability of selecting a kiwifruit twice in a row: P(two kiwifruits in a row) = 3/m * 2/(m - 1) and set this equal to 0.3 (given in the question). A bit of rearrangement of the algebra gives: 3/10 = 6/[m(m - 1)] => 3m(m - 1) = 60 => m(m - 1) = 20 => m2 - m - 20 = 0 as required.

HW
Answered by Heather W. Maths tutor

2421 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write down the value of 36^ 1/ 2


Solve the following pair of simultaneous equations 1)x+3y=11 2)3x+y=9


how would you expand quadratic factors


Make x the subject of the formula y=(4x+5)/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences