There are m fruits in a basket. 3 of the fruits are kiwis; the rest are lemons. The probability of picking two kiwis in a row (without replacement) is 0.3. Show m^2 - m - 20 = 0.

Number of lemons = m - 3. Construct a tree diagram using the information given to represent picking two fruits out of the basket (without replacement) one after the other. Since picking each fruit is an independent event, just multiply probabilities to find the probability of selecting a kiwifruit twice in a row: P(two kiwifruits in a row) = 3/m * 2/(m - 1) and set this equal to 0.3 (given in the question). A bit of rearrangement of the algebra gives: 3/10 = 6/[m(m - 1)] => 3m(m - 1) = 60 => m(m - 1) = 20 => m2 - m - 20 = 0 as required.

HW
Answered by Heather W. Maths tutor

2820 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the inequality 2(2x − 4) > 28


work out the area of a trapezium where the height is 4mm, the top length is 8mm and the bottom length is 12.5mm


Find y and x of the to following equations: x +3y = 11 and x + 2y = 9.


Expand the brackets (x+1)(x-4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning