Solve algebraically the simultaneous equations: (x^2)+(y^2) = 25 , y-3x = 13

Step 1: First rearrange second equation for either x or y (in this example it is easier to make y the subject of the equation: y = 13+3xStep 2: Substitute the expression obtained for y into the first equation ( (x^2) + (13+3x)^2 = 25 )Step 3: Clean up the equation ( 10x^2+78x+144 = 0 )Step 4: Factorise ( (5x+24) (x+3) = 0 )Step 5: Solve for x ( x = -24/5 and -3 )Step 6: Substitute calculated values of x into the first rearranged equation of y to obtain corresponding values of y ( y = -7/5 and 4 )

SB
Answered by Spondan B. Maths tutor

2479 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A cylindrical beaker has a height of 16 cm and a diameter at its bottom of 10 cm. What is its volume? Give your answer to 2 decimal places.


Solve the simultaneous equations 5x+2y=13 and x-2y=5.


A square based pyramid with corners ABCD has side length 6 cm. The distance from the centre of the square (C) to the top vertex of the pyramid (V) is 4 cm. Work out the total surface area of the pyramid.


Solve: 5x - 2 > 3x + 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning