Solve algebraically the simultaneous equations: (x^2)+(y^2) = 25 , y-3x = 13

Step 1: First rearrange second equation for either x or y (in this example it is easier to make y the subject of the equation: y = 13+3xStep 2: Substitute the expression obtained for y into the first equation ( (x^2) + (13+3x)^2 = 25 )Step 3: Clean up the equation ( 10x^2+78x+144 = 0 )Step 4: Factorise ( (5x+24) (x+3) = 0 )Step 5: Solve for x ( x = -24/5 and -3 )Step 6: Substitute calculated values of x into the first rearranged equation of y to obtain corresponding values of y ( y = -7/5 and 4 )

SB
Answered by Spondan B. Maths tutor

2536 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve these simultaneous equations: 7x+3y=84, 2x+2y=32


Solve the equation to 2 two decimal places: (2x+3/x-4 ) - (2x-8/2x+1) = 1


A scalene triangle PQR, where PQ is (3x+4)m long, QR is (2-x)m long and angle PQR is 30 degrees, has an area of 2 square metres. Find x.


I struggle with time management whilst doing an exam paper. How will I be able to answer every question in the time given for the exam?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning