A pyramid has a square base with sides of length 4m and a height 3m. What is the length from one of the base corners to the top of the pyramid?

The student should first draw a diagram of the pyramid, labelling the lengths of the base and the height. The student is not able to solve this problem in one step but must think two steps ahead. The student must realise that in order to solve the question half the diagonal length of the base must be known. This can be found by using Pythagoras Theorem to find the hypotenuse of a right angle triangle with other sides being 2m. This half diagonal length is given by:lB = ( (2m)2 + (2m)2 )1/2 = ( 4m2 + 4m4 )1/2 = ( 8m2 )1/2 = (8)1/2mHence this diagonal is the square root of 8 meters long. Knowing this a second right angle triangle should be drawn of base length sqrt(8) and height of 5 meters. Pythagoras should again be used to find the hypotenuse of this triangle:l = ( (sqrt(8)m)2 + (3m)2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 8m2 + 9m2 )1/2 = ( 17m2 ) = sqrt(17)m

NH
Answered by Nathan H. Maths tutor

3166 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make s the subject of the equation: 4st + 8 = 5r


The equation of Line 1 is y=2x-2 and the equation of Line 2 is 2y-4x+5=0. Prove that these 2 lines are parallel to each other.


A bag contains 10 apples. Three of the apples are green and seven of the apples are red. If an apple is pulled from the bag at random, what is the probability that the apple will be green?


Solve the simultaneous equations 2x + 3y = 19 , 3x + y = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning