There are 6 orange sweets in a bag of n sweets. Hannah picks two sweets at random without replacement, and they are both orange. Show that n^2-n-90=0

This is a multi step question that requires both good understanding of probability and maniuplating algebraic fractions.PROBABILITYThe first step is recognizing that as there are 6 orange sweets out of a total n, the probability of picking an orange sweet once is 6/n. (For example, if n=12, we would pick an orange sweet 6 times out of 12 on average, so we would have the probability =6/12, or one half)Then, notice we now have 5 orange sweets in a bag of n-1 sweets. So the probability of picking an orange sweet on the second go is 5/n-1 (in our example this happens 5 times out of 12-1=11). Most importantly, we have to remember than when we have two (independant) events, the probability of them both happening is their probabilities multiplied together. In this case, the probability of picking an orange sweet on the first and second go is (6/n)(5/n), and we know this equals 1/3. ALGEBRA(6/n)(5/n-1)=1/3 multiply tops and bottoms of fractions together(65/n(n-1))=1/3 multiply out denominators (imagine moving them from the bottom of the fraction to the other side)653=1n(n-1) expand brackets 90= n^2-n subtract 90 n^2-n-90=0

BN
Answered by Ben N. Maths tutor

2505 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Mark wants to borrow money to buy a car. His bank offers him a loan of £5,000 to be payed back over 3 years at 4% compound interest. a) Work out the interest acquired in the 2nd year. b) In total how much will Mark end up paying back the bank?


A point lies on a circles diameter such that the distance from the point to the edge of circle is 4 times the distance from the point to the centre. What is the circles area in cm^2 if the distance from the point to edge is 5cm?


Using the substitution method, solve the following simultaneous equations 2y+3x=14 and 6x-y=8


How to solve Simultaneous Linear Equations, e.g. (4x + 5y = 17) and (3x + 2y = 4)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning