solve the simultaneous equation x^2 + 2y = 9 , y - x = 3

First we need to find a value for x in terms of y , this can be done by rearranging the second equation y - x = 3 to give x = y - 3. This equation is then substituted into the first equation so that everything is in terms of y giving us (y - 3)^2 + 2y = 9. We then multiply out the brackets to give us y^2 - 6y + 9 + 2y = 9 this simplifies to y^2 - 4y = 0. Therefore y = 0 to find the x value we sub this value of y into the second equation to give 0 - x = 3 and solve to find x = -3

SB
Answered by Sara B. Maths tutor

2702 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Evaluate 25^(3/2) giving your answer as an integer or simplified fraction (2 marks).


ABCDEFGH is a cuboid. AB=5.6 cm CH=7.2cm. Angle BCA=44degrees. Find the size of the angle between AH and the plane ABCD giving your answer correct to one dp.


Find the roots of the following curve: y = 6x^2 - 4x.


Two apples and three bananas cost a total of £1.30. Seven apples and one banana cost a total of £1.70. Find the cost of a) one apple and b) one banana.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning