Differentiate a^x

  1. Set y=a^x2. Take the natural log of both sides: ln(y)=ln(a^x)3. Using the log rules, simplify: ln(y)=xln(a)4. Differentiate both sides with respect to x: 1/y dy/dx=lna+05. Rearrange: dy/dx=yln(a)6. Using the definition of 'y' set in step 1: dy/dx=a^(x)ln(a)
HK
Answered by Hafsah K. Maths tutor

16728 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y=7-2x^5. What's dy/dx?Find an equation for the tangent to the curve where x=1. Is itan increasing or decreasing function when x=-2?


Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.


Differentiate (3x^2-5x)/(4x^3+2x^2)


Showing all your working, evaluate ∫ (21x^6 - e^2x- (1/x) +6)dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences