Differentiate a^x

  1. Set y=a^x2. Take the natural log of both sides: ln(y)=ln(a^x)3. Using the log rules, simplify: ln(y)=xln(a)4. Differentiate both sides with respect to x: 1/y dy/dx=lna+05. Rearrange: dy/dx=yln(a)6. Using the definition of 'y' set in step 1: dy/dx=a^(x)ln(a)
HK
Answered by Hafsah K. Maths tutor

17021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


Differentiate y=(x-1)^4 with respect to x.


The volume of a cone is V = 1/3*pi*r^2*h. Make r the subject of the formula.


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning