Solve the simultaneous equations 5x + y = 21, x - 3y = 9

Method 1 - By Elimination: Firstly, understand that in order to eliminate a variable, the coefficient needs to be the same for the variable in both equations. We can eliminate the x variable by multiplying the second equation by 5. This gives us: 5x-15=45.If we now minus the second equation from the first, the 5x-5x cancels out to give 0 and y-(-15y) gives us 16y. So we now understand that 16y = -24. Once we divide both sides by 16, we get y = -1.5. We then substitute this into the original equation, e.g. 5x+(-1.5)=21 then 5x = 22.5. Upon dividing both sides by 5, we get x = 4.5.
Method 2 - By Substitution: We can reorder the second equation to make x the subject which gives us x = 9 + 3y. This can then be substituted as x in the first equation as such: 5(9+3y)+y=21. Upon expanding the brackets, we get 45+16y=21. We then minus both sides by 45 to move it over to the other side: 16y=-24. Which when simplified gives us -3/2 or -1.5.This can then be substituted for y in one of the equations (I'll pick the first) to give us: 5x - 1.5=21 and so 5x = 22.5. When both sides are divided by 5 we get 4.5 as a value for x.

RV
Answered by Rahil V. Maths tutor

2783 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the equation of the tangent to the circle x^2 + y^2 = 25 at the point (-3, -4)?


One of the teachers at a school is chosen at random. The probability that this teacher is female is 3/5. There are 36 male teachers at the school. Work out the total number of teachers at the school.


How do I find the roots of a quadratic equation?


If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences