Find the values of x that satisfy the quadratic equation: x^2 + 14x + 40 = 0

We use factorisation of double brackets to re-express the equation in a more useful form. For this factorisation, we require two numbers that add to make 14 and also multiply to make 40. We notice that the numbers 10 and 4 satisfy this condition.Hence we can factorise: so x^2 + 14x + 40 = (x+10)(x+4) and since the quadratic equation was set equal to 0 then: (x+10)(x+4) = 0.
For this equation to hold, either the first bracket must be equal to 0 or the second. In other words, either: (x+10) = 0 or (x+4) = 0 which means either: x = -10 or x= -4. (These values satisfy our original quadratic equation and we can simply check that this is correct by substituting x = -10 and x= -4 back into the quadratic equation and we will find that the expression indeed equals 0 in both cases).

WM
Answered by William M. Maths tutor

4338 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x + y = 21, x - 3y = 9


Ben would like to buy two tickets for the theatre, each ticket costs £25 and there is a 15% booking fee applied to the ticket cost. How much does it cost him to buy the two tickets with the additional fee?


How do you solve the following simultaneous equations? 5x+6y=3 2x-3y=12


Solve the following equation: x^2- x - 12 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning