A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.

From the first look, we can see the question states the car is undergoing constant acceleration, thus we know the SUVAT equations are valid. Then reading on, we're required to find the final velocity, v, of the car as it passes B, therefore we must find at least 3 of the 4 other variables of the system (a, u, t and S in addition to v). As we are given a = 2ms^-2, u = 10ms^-1 (the velocity at A) and S = 50m, we can put these values straight into any SUVAT equation containing a, u, v and S. This equation is v^2 = u^2 +2as. Therefore the answer is:
v = sqrt(u^2 + 2as)v = sqrt(10^2 + 2250)v = 10*sqrt(3) = 17.32 ms^-1 to 2 d.p

Answered by Maths tutor

2643 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A projectile is thrown from the ground at 30 degrees from the horizontal direction with an initial speed of 20m/s. What is the horizontal distance travelled before it hits the ground? Take the acceleration due to gravity as 9.8m/s^2


Evaluate the integral of cos(x)sin(x)(1+ sin(x))^3 with respect to x.


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences