Solve the simultaneous equations 5x + y = 21 and x- 3y = 9

There are different ways to approach solving a simultaneous equation question. For this one I recommend using substitution for this one where you insert one equation into the other.
First take the equation x - 3y = 9 . Rearrange that so you get x equal to something, in this case it would be x = 9 + 3y by adding the 3y to both sides. Now that we have a value for x we can put it into our other equation, 5x + y = 21, which becomes 5(9+3y) + y = 21. Now expand the bracket to get 45 +15y +y = 21 which is now an equation we can solve. Rearrange so we get all y values on one side of the equals and everything else on the other side: 16y (adding the 15y and y) = -24 (21 -45). We then divide by 16 to get a value for y which will be -1.5. Getting a value for x is a lot easier as we just substitute our y value into the first equation, x = 9+3y , becoming x = 9 + 3(-1.5). Therefore our x value will be 4.5.

GB
Answered by George B. Maths tutor

2586 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Multiply (x+2) & (x+3)


How to apply the quadratic equation


Two shops have deals for purchasing pens: "3 for £2" and "5 for £3" . Mr. Papadopoulos wants to buy 30 pens for his class in school, which deal should he use if he wants to spend the least amount of money possible, and how much will he spend?


There are 200 students in Year 10. 110 are boys. There are 250 students in Year 11. 140 are boys. Which year has the greater proportion of boys?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences