Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14731 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (x+3)/(x(x-3)) with respect to x


Solve simultaneously: x + y + 3 = 0 and y = 2x^2 +3x - 1


Express as a simple logarithm 2ln6 - ln3 .


Find the stationary point of the function f(x) = x^2 +2x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning