Why does ln(x) differentiate to 1/x ?

At first glance, this may seem quite complicated. However, it is simple once you make use of exponents. 
Let y=ln(x)
This can be written as: e= eln(x)
e to the power of a natural log cancels out, which gives: 
ey=x
Differentiating both sides with respect to x gives:
ey (dy/dx)=1 
[This uses implicit differentiation. Remember that you must multiply ey by dy/dx as there isn't an x on that side]
Substituting in ey=x gives:
x (dy/dx) =1
And so dy/dx = 1/x

CE
Answered by Charlie E. Maths tutor

14352 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


What is the area under the graph of (x^2)*sin(x) between 0 and pi


Determine the first derivative of the following curve defined by parametric equations x = 20-5t and y = t^5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning