Find the stationary points of the curve y=x^4-8x^2+3 and determine their nature.

First we will differentiate y to find dy/dx= 4x3-16x. Stationary points exist at dy/dx=0 so we set 4x3-16x=0 and solve for x. x(4x2-16)=0. So x=0 or 4x2-16=0. If 4x2-16=0 then x2=4 and so x=2 or x=-2. By subbing in our values of x=0, 2, -2 into our original equation we can find the corresponding value of y for each of these x values. They give y=3, -13, -13 respectively. Hence we have found that there are three stationary points at (0, 3), (2, -13), (-2, -13). To determine the nature of these stationary points we need to find the second derivative of the curve, which is to differentiate dy/dx. This gives, d2y/dx2= 12x2-16. Now we sub in the values of x at each of our stationary points to determine their nature. At x=0, d2y/dx2= -16 which is less than 0 so the stationary point is a maximum. At x=2, d2y/dx2= 32 which is greater than 0 so is a minimum. At x=-2, d2y/dx2= 32 which again is greater than 0 and so is a minimum. And so here we have found all stationary points and determined their nature as required.

Answered by Maths tutor

7796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate y=x^x?


Prove that the square of an odd integer is odd.


A curve C is defined by the parametric equations x=(4-e^(2-6t))/4 , y=e^(3t)/(3t), t doesnt = 0. Find the exact value of dy/dx at the point on C where t=2/3 .


What is a logarithm?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning