By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1

The area under a curve is found by integration.
Area = integral{xexp(x) dx} with limits 0 and 1
It's necessary to use integration by parts to find this integral as there are two x functions multiplied together. The formula is integral{u dv}= uv - integral{v du}.
To make this applicable to our function we use the substitution of u = x and dv = exp(x). This is done as, in general, we chose u to be the least complicated function which in this case is x. There exists a more rigourous set of rules we can follow to chose u and dv, but for this question we just need to know that u needs to get simpler when we diffrentiate it and dv musn't get more complicated when we integrate it.
==> u = x => du = 1 dx and dv = exp(x) dx => v = exp(x)
==> Area =[ x
exp(x) - integral{exp(x)1 dx} ]with limits 0 and 1
==> Area = [x
exp(x) - exp(x)] with limits 0 and 1
Now we need to apply limits:==> Area = [1*exp(1) - exp(1)] - [0 - exp(0)]
Remembering that exp(0) = 1 the area under the curve is:==> Area = 1

Answered by Maths tutor

2752 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = xe^(2x).


How to find the stationary point of y= x^2-108x^(1/2)+16 and determine the nature of the stationary point?


How to do the chain rule.


How to solve pully type questions in mechanics


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning