For a graph C with equation y=3/(5-3x)^2, find the the equation of the line normal to the graph at point P, where x=2. Give your answer in the form ax+by+c=0

Find out the value of the y coordinate where x=2y=3/(5-3(2))^2=3Differentiate function in order to find the gradient of the graph at point Py=3/(5-3x)^-2Use chain rule where u=5-3xdu/dx=-3dy/dx=3u^-2Hence dy/dx=-6u^-3*-3dy/dx=18(5-3x)^-3dy/dx at x=2 is 18(5-3*2)^-3=-18Take negative reciprocal of 18 to find gradient of line normal to graph-18-->1/18y-y1=m(x-x1)Substitute in valuesy-3=1/18(x-2)18y-54=x-218y-x-52=0-x+18y-52=0

JI
Answered by Jazib I. Maths tutor

3944 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


How Do I Integrate cos(x) and sin(x) with higher powers?


Integral of sin^2(x) with respect to x


a) Solve the following equation by completing the square: x^(2)+ 6x + 1= 0. b) Solve the following equation by factorisation: x^(2) - 4x - 5 = 0 c) Solve the following quadratic inequality: x^(2) - 4x - 5 < 0 (hint use your answer to part b)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning