Solve these two equations simultaneously: 7x + y = 1 and 2x^2 - y = 3.

Equation 1: 2x2 - y = 3 and Equation 2: 7x + y = 1. Rearrange equation 1 to make y the subject: 2x2 - y = 3, 2x2 - 3 = y. Substitute equation 1 into equation 2 to get equation 3: 7x + (2x2 - 3) = 1, 7x + 2x2 - 3 = 1, 2x2 + 7x - 3 = 1, 2x2 + 7x - 4 = 0. Solve equation 3 to get values of x: 2x2 + 7x - 4 = 0, (2x - 1)(x + 4) = 0 so 2x - 1= 0, 2x = 1, x = 1/2 and x + 4 = 0, x = -4. Substitute the values of x into equation 2: 7x + y = 1, 7(1/2) + y = 1, 7/2 + y = 1, y = -5/2 and 7x + y = 1, 7(-4) + y = 1, -28 +y = 1, y = 29. Therefore the answer to the solution is: x = 1/2 y = -5/2 and x = -4 y = 29.

DD
Answered by Darcie D. Maths tutor

3371 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Without expanding any brackets, work out the solutions of 9(x+3)^2 = 4


a) If x=4, work out 3(x^2). b) Solve 6x-3=x+11


Nancy is driving and makes a wrong turn. The satnav indicates that her journey will take an extra 7 minutes. Nancy drives at an average speed of 60km/h to the nearest 5km/h. What's the greatest possible distance traveled in this detour in km to 2.d.p?


Solve the simultaneous equations: 6x - 5y = 17, 3x + 8y = 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences